A Proof of Strong Normalisation of the Typed Atomic Lambda-Calculus

نویسندگان

  • Tom Gundersen
  • Willem Heijltjes
  • Michel Parigot
چکیده

The atomic lambda-calculus is a typed lambda-calculus with explicit sharing, which originates in a Curry-Howard interpretation of a deep-inference system for intuitionistic logic. It has been shown that it allows fully lazy sharing to be reproduced in a typed setting. In this paper we prove strong normalization of the typed atomic lambda-calculus using Tait’s reducibility method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Normalisation of Cut-Elimination that Simulates β-Reduction

This paper is concerned with strong normalisation of cutelimination for a standard intuitionistic sequent calculus. The cutelimination procedure is based on a rewrite system for proof-terms with cut-permutation rules allowing the simulation of β-reduction. Strong normalisation of the typed terms is inferred from that of the simply-typed λ-calculus, using the notions of safe and minimal reductio...

متن کامل

Strong Normalisation of Cut-Elimination that Simulates β-Reduction Long version

This paper is concerned with strong normalisation of cutelimination for a standard intuitionistic sequent calculus. The cut-elimination procedure is based on a rewrite system for proof-terms with cut-permutation rules allowing the simulation of β-reduction. Strong normalisation of the typed terms is inferred from that of the simply-typed λ-calculus, using the notions of safe and minimal reducti...

متن کامل

Simply Typed Lambda-Calculus Modulo Type Isomorphisms

We define a simply typed, non-deterministic lambda-calculus where isomorphic types are equated. To this end, an equivalence relation is settled at the term level. We then provide a proof of strong normalisation modulo equivalence. Such a proof is a non-trivial adaptation of the reducibility method.

متن کامل

A Formalisation of a Dependently Typed Language as an Inductive-Recursive Family

It is demonstrated how a dependently typed lambda calculus (a logical framework) can be formalised inside a language with inductiverecursive families. The formalisation does not use raw terms; the welltyped terms are defined directly. It is hence impossible to create ill-typed terms. As an example of programming with strong invariants, and to show that the formalisation is usable, normalisation...

متن کامل

Normalization by Evaluation for Typed Lambda Calculus with Coproducts

Abstract We solve the decision problem for simply typed lambda calculus with strong binary sums, equivalently the word problem for free cartesian closed categories with binary coproducts. Our method is based on the semantical technique known as “normalization by evaluation” and involves inverting the interpretation of the syntax into a suitable sheaf model and from this extracting appropriate u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013